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1. Introduction
The importance of this investigation hinges on the question of whether
or not VR.E technology can be exploited to design a better limiting
device. Most limiter designs are nothing more than a conditional short
cicut to ground. As they stand, conventional limiters ate semicon-
ductor p-n junction devices. There is much concern over the speed and
robustness of conventional limiters in ever-increasing hostile environ-
ments.

The speed of a semiconductor device such as a metal semiconductor
field effect transistor (MESFET) is ultimately limited by the time it
takes for an electron to travel from the source to the drain. Impurity
and phonon collisions within the lattice of the solid lead to electron
velocity saturation at near the speed of sound [1]. Vacuum valves
operate by electrons passing from cathode to anode uninterrupted by
molecular collisions. This is called ballistic transport. Typical voltages
(100 V) and dimensions (1 Izm) yield transit times less than 1 ps [2].
Complete switching times are impaired by parasitic capacitances,
which are characteristic of small devices, as well as packaging capaci-
tance. Still, VgE provides the technology for extremely fast switching
and, ultimately, extremely fast limiting.

Most semiconductor devices rely on low-voltage transport in a low-
density electron gas. Ionizing radiation can cause an excitation of
carriers, changing the density of the electron gas, thus leading to
significant shifts in bias voltage. The result may be transient upset, or
permanent damage, which is evident from previous experimentation
[3]. Vacuum valves have greater immunity to such perturbations since
the source of electrons is either a metal or highly doped silicon
cathode. Vacuum valves also work at much higher voltages than
semiconductors, again making them far less sensitive to large voltage
pulses.

In any protection device that operates by short-circuiting delicate
components, this very low impedance alternative path must be initi-
ated before the transient pulse causes damage. Spike leakage is energy
that "leaks" through before the device is completely turned on (see fig.
1). VtiE technology provides the hope of reducing this energy while
maintaining a sufficiently robust device.
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Figure 1. Spike leakage
of a typical PIN diode
limiter.

Espike =f P( t) dt

tot

2. Literature Search Results

The first step in this investigation was a literature search. The goal was
to gain a basic knowledge of the technology as well as become aware
of the latest developments in the field. This was necessary in order to
make rea5onable judgments as to whether this technology could lend
itself to the development of hardening devices comparable to existing
semiconductor models.

2.1 Technology Overview

The emission of electrons from the cathode, modulation of the electron
beam by a grid, and collection at the anode is the basis of operation of
most vacuum electronic devices. The energy required to strip an
electron free from its parent nucleus is the work function, which is
obviously different for different materials. Traditional vacuum tubes
exploit the process of thermionic emission, where electrons are "boiled
off" from the cathode by a heater. The electron stream is then modu-
lated by a grid and collected at the anode. Microelectronic fabrication
technology has provided the ability to create devices with this same
fundamental operation, yet on a microscopic scale. With VAE devices,
electron emission is induced by the high electric fields produced due
to specific geometry. This is field emission.
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Field emission provided one of the first successes of quantum me-
chanics when Fowler and Nordheim were able to explain it in terms
of tunnelling through a triangular energy barrier [11 (see fig. 2). The
Fowler-Nordheim equation, derived from this work in a basic form,
describes the current density I in terms of the work function 0 and the
electric field E. It is, approximately,

1= aE 2-l0)exp , (1)

where a and P are constants. The experimental study of field emission
then became very active in the 1930's with attempts to confirm the
Fowler-Nordheim theory using experimental techniques. Since then,
work has been done to further understand and refine this process in
order to fabricate devices operating under field emission principles.

In field emission, it is the high electric field at the cathode surface
which allows quantum-mechanical tunnelling through the approxi-
mately triangular energy barrier. Two particular field emitter geom-
etries emerged: point-to-plane and plane-to-plane (see fig. 3). The
high concentration of the electric field at very sharp tips makes point-
to-plane geometry more ideal. Present technology can manufacture
field emission tips whose radii of curvature are in angstroms. Plane-
to-plane geometry requires well-defined, ultra-flat electrode surfaces.
Electrical breakdown between flat electrical surfaces is not yet well
enough understood to make predictions and exploit these predictions
in the fabrication of a stable device. What is known is that microscopic,
whisker-like protrusions on the plane are factors in initiating electrical
breakdown.

Figure 2. Schematic Image potential
energy diagram for
field emission.

Work4function
Fer •lev High electnc field

* *000(E > 109 //m)

O0000

of
energy band

7



Figure 3. (a) Plane-to- (a) Anod (b) node
plane and (b) point- *,_,__to-plane field emitfter 1
geometries.

tpa fl Caetodt c:i:orr

The merger of point-to-plane and plane-to-plane geometries led to the
concept of field emitter arrays (FEA's). Several thousand field emitter
tips are spaced closely together to form an FEA. One advantage of the
FEA structure is that large arrays can be built, thus allowing high
currents to flow. The maximum current density ..,, (A/cm2 ) of the
FEA is on the order of 4 x 104 and is independent of the applied voltage
[4]. Using this maximum current density and a typical value of 100
,A / tip, we can see that a typical FEA has about 4 x 108 tips/cm 2.These
values are being pushed to higher and higher limits through continu-
ous experimentation with new materials and the application of better
fabrication techniques.

2.2 Fabrication

If we consider the distance (d) as the length between the cathode tip
and the anode surface (see fig. 4), we must have some criteria to
determine whether an electron travelling along that path is indeed
travelling within a vacuum. When (d) is much smaller than the
electron mean flee path (Ae) for collision with residual gas, we consider
the medium a vacuum [5]. We define X, as

T [cm] (2)
273 p1',(V)

where P,(V) is the probability of collision, T is the absolute tempera-
ture in kelvins, and p is the pressure in torr. The practical limits on
fabrication technology allow for d - 0.5 gm. Now, given that the
probability of collision in a particular distance x is given by

p(x) = 1 - e-x/ = x/4 for x/Ae << 1 , (3)
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Figure 4. Schematic of
a typical field emission
gated diode. A node

(Vacuum) ¶' ;' ', 2 Otats

+100V di I' S102 ,, ,film

F Metal or silicon base
.__cathodei

then
d s 10-2,, (4)

if we assume that the device can tolerate one in every one hundred
electron collisions, or p(x) = 1/100. For this calculation we let the
temperature T = 300 K and the pressure p a 760 tort.

Fabrication techniques developed from integrated circuit technology
have been directly adapted to the fabrication of FEA's. Some of these
techniques are as follows: anisotropic etching of metals and semicon-
ductors, etching of a unidirectional solidified eutectic, and the use of
deposition techniques, in conjunction with ultraviolet (LUV) or elec-
tron beam lithography. Figure 5 is a progression diagram illustrating
a UV lithography fabrication process developed by the Naval Re-
search Laboratory, uirag silicon (Si) and silicon-dioxide (SiO) [1].
Figure 6 shows a chemically selective wet-etching technique devel-
oped by Science Applications International Corporation (SAIC), us-
ing a semiconductor-metal eutectic composite material Si-TaSi2. In
both techniques there is an attempt to control the tip height while
minimizing the tip radius.

Field emission is very sensitive to surface work function, electric field,
and the field-enhancing tip shape. Although this is indeed true,
cathodes have still shown very long lifetimes [1,6]. Surface cleanliness,
atomic contamination, and lack of tip uniformity have been shown to
play a large role in FEA performance over time.

9



Figure S. Progression
diagram ofa UV S1 SiO
lithographic
fabrication technique.
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Figure 6. Progression diagram of a eutectic wet-etching fabrication technique.
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3. Experimentation

At the present time, SAIC has development underway for several
prototype vacuum diode limiters for the Army Research Laboratory
(ARL). Their designs must be compatible for microwave circuitry.
After the devices are designed and fabricated, they will undergo
testing here at ARL, Adelphi. Later reports will present the results of
Utis experimentation.

Contacts through the Naval Research Laboratory (NRL) have pro.
duced the possibility of another manufacturer. The Microelectronics
Center of North Carolina (MCNC) at Research Triangle Park has been
working with NRL for several years in their research and fabrication
techniques [7,8]. It may be possible to tap into the resources they have
developed in order to obtain workable devices for microwave re-
search.

4. Hardening Device Configurations

The primary hardening device under consideration is the limiter.
Conventional limiters operate by providing a conditional short to
ground. The conditions are determined by the switching device (i.e.,
PIN diode). As stated earlier, we are convinced that VgE devices have
the potential to present advantages over PIN diodes in turn-on speed
and power handling capability. If this is the case, then limiter circuits
can be designed that do not allow as much spike leakage as PIN diodes
with thin I-regions, and can handle more power than PIN diodes with
thick I-regions. More power handling capability compared to PIN
diodes is desirable since the Vg.E device can then handle electromag-
netic pulse (EMP) signals. Limiter designs come in two classes at the
present time: the first is the conditional short to ground and the second
is the limiting attenuator.

4.1 Conditional Short to Ground

Figure 7 shows a typical two-element limiter. Here Vp.E devices are
substituted for PIN diodes. One of the immediate disadvantages of
this device can be visualized from the I-V characteristics of a typical Si
FEA, shown in figure 8. The turn-on voltage of the device is about 120
to 130 V compared to 0.7 V for Si PIN diodes. When the goal is to
protect the front door of communications systems, the power needed
to turn on the limiter may be well above the system's threshold.
However, research is ongoing to try to bring down the turn-on
voltage.
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Figure 7. Possible
configuration for a I, - " -- - _
dual VpE element 0 0
limiter.

-. r

Figure 8 I-V
characteristics of a
typical Si FEA.

7

S3

2

1

0 20 40 60 80 100 120 140 160 180 200
10 30 50 70 90 110 130 150 170 190

VC (volts)

4.2 Limiting Attenuator
Another limiter configuration is a design that provides limiting by
absorption. The goal is to reduce the reflected power. This may be
advantageous for military systems. Figure 9 is an example of a
possible limiting attenuator. The nonlinear property of the VýAE device
switches in a x-network attenuator when the input power exceeds a
threshold. Another advantage of a circuit similar to this is that it may
be possible to design in the threshold level. Work is continuing at ARL
to develop better circuit designs for this type of liatitet [9]. It may be
possible to incorporate a VpE device into the design.
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Figure 9. Possible R,
configuration for a
limiting attenuator0
circuit Using a VIAE
element.
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5. Future Work

Several things are yet to be done to complete this work. First of all,
efforts must continue to gain further knowledge of the VWE technol-
ogy, as well as staying abreast of the latest developments in the field.
This will be a result of continued literature search and study as well as
observation and experimentation. The fact that this is a relatively new
field means that progress will be made quickly from level to level. It
is our hope to successfully apply this technology to hardening devices,
which calls for a deeper understanding of the entire design/fabrica-
tion process. Secondly, we must be able to develop a microwave
limiter design into a tangible realistic circuit. Although the basic
technology alludes to a feasible device, we must find out whether
packaging restrictions will deny us the advantages we seek. Thirdly,
complete microwave characterizations of manufactured devices must
be made if indeed we are able to overcome some of the design barriers.
Not only will we attempt to verify other experimentation being done
at other facilities, but we will also attempt to generate new character-
izations of VgE devices in the microwave arena. Finally, we will
attempt to bring ARL into the network of research and information
regarding this technology.
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